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According to numerous experimental observations and theoretical models vibrated 
layers composed of large granules behave like a solid plastic body. In contrast, in this 
study experimental data are presented that reveal that, for constant vibration 
amplitudes A > 1 cm with the frequency w increasing from zero, all layers pass through 
three vibrational states, with the respective behaviours being as of (i) a solid plastic 
body, (ii) a liquid, (iii) a gas. In the liquid-like vibrational state transverse waves 
propagating along the layer width were observed. These waves were shown to be 
gravitational resonance waves, with the corresponding frequencies well correlated by 
the knowI;_ formula for incompressible liquids. In the gas-like vibrational state 
compression (shock) and expansion waves propagating across the layer height, were 
observed. 

A theoretical model for time-periodic collisional vibrational regimes was developed 
on the basis of the Euler-like equations of a granular gas composed of inelastic spheres. 
The model shows that the vibrational granular state (bed porosity, shock wave speed, 
granular pressure and kinetic energy) is inter alia governed by the dimensionless 
parameter V = (Aw) / (h ,  g)l/', with g ,  h, being the gravitational acceleration and the 
height of the resting layer, respectively. This is in contrast with the previous studies, 
where the behaviour of vibrated granular layers was interpreted in terms of the 
dimensionless acceleration r = (Aw2) /g .  The proposed model was tested by processing 
the data obtained from photographs of the particle distribution within vibrated layers. 
Theoretical predictions of the particle average concentration compared favourably 
with the experimental data. 

Other phenomena observed in vibrated granular layers include the formation of 
caverns, circulatory motion of granules and synchronized periodic motion of two 
adjacent vibrated layers of different widths. The importance of the observed 
phenomena in relation to various technological processes involving bulk materials 
(vibromixing, vibroseparation, etc.) is discussed. 

1. Introduction 
Moving granular materials are widely met in Nature and in various industrial 

technological processes. Examples include particle conveying (Erdksz & Nkmeth 1988), 
classification, separation, mixing, discharge and drying, as well as heat transfer 
processes (Chlenov & Mikhailov 1972; Gutman 1968; Roberts 1984). The motion of 
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Videotape 7 
FIGURE 1. Schematic diagram of experimental apparatus. 

granular media may occur in several regimes, which can be subdivided into rapid and 
slow flows. The latter flows are characterized by permanent contacts between 
neighbouring particles during their motion. In these regimes bulk properties of moving 
granular media are controlled by the Coulomb interparticle friction forces. On the 
other hand, in rapid flows particles interact by fast impacts when they collide. Most of 
the time particles are freely flying between successive collisions, during which the 
particle kinetic energy and momentum are transferred. Particle impacts within 
granular media are accompanied by kinetic energy losses associated with the non- 
conservative nature of these interactions. The effect of these losses is to increase the 
particles’ internal energy, and, hence, their temperature. Therefore, a constant source 
of mechanical energy is needed to sustain the collisional motion. 

Rapid granular flows may be classified with respect to the nature of external energy 
sources supplying kinetic energy to moving particles. These sources include (i) gravity 
force, which, in particular, causes rapid shear flows of granular materials on inclined 
surfaces ; (ii) air pressure, which governs particle motion in pneumotransport, fluidized 
beds, etc.; (iii) externally applied electric or magnetic fields (e.g. in electro- and 
magnetofluidized beds) ; (iv) externally induced vibrations. The latter motion includes 
applications in vibromixing, vibroseparation and vibrofluidization processes (Chlenov 
& Mikhailov 1972; Gutman 1968; Roberts 1984) and vibrational enhancement of 
catalytic processes (Thomas & Squires 1989). This study is concerned with the 
collisional motion coerced by externally applied vibrations. 

The behaviour of granular materials moving in collisional regimes is similar to that 
of flowing liquids or gases. This was experimentally observed for rapid shear flows (see 
the review by Savage 1984) and for granular materials excited by external vibrations 
(Chlenov & Mikhailov 1972). When vibrated, granular materials fill vessels of arbitrary 
forms. Moreover, experiments performed by Chlenov & Mikhailov show that 
vibrofluidized granular layers subjected to small simple shear rates y = du/dy behave 
like Stokesian viscous fluids, i.e. shear stresses arising within the layers are proportional 
to y .  

The collisional motion of granular media may be investigated by stochastic analyses 
of ensembles of identical (in most cases spherical or disk-like) particles, possessing 
specified inelasticity and roughness. These particle properties appear in the various 
collisional models used to describe the collisional motion of granular media by (coarse- 
scale) hydrodynamic equations. The effective transport properties required in these 
equations are obtained by various averaging methods. Specific studies dealing with 
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stochastic analyses of moving granular materials were concerned with modelling of 
fluidized (Nigmatullin 1978 ; Homsy, Jackson & Grace 1992), magneto-fluidized 
(Buevich, Sutkin & Tetukhin 1984), and rapid granular flows (Campbell 1990). The 
latter problem has received wide attention in the literature and has been treated by 
various methods of different rigour and complexity. The collisional motion of 
vibrofluidized granular materials has not been yet analysed, although it may be 
inferred that it may also be modelled by appropriate hydrodynamic equations (Raskin 
1975; Haff 1983). 

Fluidized collisional states in vibrated granular layers result from conversion of the 
work performed by the vessel, E,, into the kinetic energy, E, of random granular 
motion. The mechanism responsible for the transformation of E, into E in 
vibrofluidized layers (as well as in molecular gases) is provided by compression waves 
(Goldshtein & Shapiro 1995). Compression and expansion waves are, therefore, 
phenomena inherent in the vibrofluidization of granular materials. Experimental 
observation and modelling of these wavy processes occurring during collisional motion 
of vibrated granular materials are the objectives of the present work. 

The first attempt to treat the collisional motion of vibrational granular layers by 
means of a hydrodynamic model was made by Savage (1988). He assumed the existence 
of ‘acoustic waves’ leading to ‘acoustic streaming’ (similar to the comparable 
phenomena in viscous fluids), when trying to explain the appearance of circulatory 
streams within vibrofluidized dry granular materials. However, no wavy motion had 
yet been seen in vibrofluidized layers of large heavy granules. The phenomena observed 
so far in such layers included particle convective motion and segregation of particles 
of different sizes (see the recent review by Meakin & Skjeltorp 1993). 

Bachmann (1940) found that vibrated beds of large lead and glass spheres act as a 
single block when the bed depth exceeds about six particle monolayers. These 
observations led to modelling vibrated bed behaviour as a single perfectly plastic body 
(single-body model) (Kroll 1954; Gutman 1976). A liquid-like behaviour was found in 
the upper parts of vibrated layers thicker than about six particle monolayers (Clement 
& Rajchenbach 1991). Bending of vibrated beds of small particles (powders) was 
observed by Thomas et al. (1987) and Fauve, Douady & Laroshe (1989). This can 
largely be attributed to the effect of particle-air interactions dominating the motion of 
small particles. 

All previous experimental investigations (Kroll 1954; Gutman 1976 ; Thomas et al. 
1987, 1989) were conducted for vibration frequencies, f, of 25-150Hz, with a 
maximum acceleration of g-log. These regimes were chosen for investigation because 
of the typical features of vibrating mechanical equipment, e.g. electromagnetic 
vibrators. and also because of the single-body model, generally accepted for the 
description of the vibrational motion of bulk materials. According to the concepts of 
solid mechanics (Kroll 1954; Gutman 1976; Erdesz & Mujumdar 1989) the motion of 
a rigid body is governed by the gravitational force mg, and the inertial force mw2A 
induced by the vibrating vessel, with m being the particle mass; A and w = 2nfbeing 
the amplitude and the angular frequency of vibrations, respectively. As such, the ratio 
r = A w 2 / g  serves as the single dimensionless parameter governing the rigid-body 
motion of a granular material. Since modern vibrational stands generate vibrations 
with relatively small amplitudes (several millimetres), in all experiments the parameter 
r was varied by means of an appropriate choice of the frequencyfwithin the range of 

How can collisional regimes be achieved in vibrofluidized granular layers? It is clear 
that in all experiments on vibrofluidized layers the kinetic energy of the moving wall, 

25-1 50 Hz. 
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E,, was mainly transformed into the kinetic energy associated with the average motion 
of the whole layer, rather than to the kinetic energy, E, of random granular motion. 
As a result, layers behaved like single bodies, i.e. the granular kinetic energy remained 
low. 

In order to observe the propagation of compression waves the layer compressibility 
should be increased, which means that sufficiently low particle number densities need 
to be achieved. Therefore, in these regimes granular kinetic energy should be increased. 
It is well known (Courant & Friedrichs 1948) that a wall moving with a velocity v 
generates gas kinetic energy of the order v2. As such, in order to increase the granular 
kinetic energy and, hence, the layer compressibility, the wall’s maximum vibrational 
velocity u,,, = Aw should be increased. 

In the above studies Aw was small, therefore the compressibility of the granular 
layers was negligible and no waves could be observed. Indeed, since in all these studies 
the layers were vibrated with small amplitudes A ,  large vibrational velocities Aw could 
be achieved only by increasing the frequency w.  However, any significant increase of 
w is clearly accompanied by rapidly increasing acceleration Au2, which is limited by the 
strength requirements. 

Bearing in mind the above considerations, in the present study granular layers are 
experimentally investigated with large vibrational velocities Aw, which is achieved by 
employing large amplitudes and low frequencies. Explicitly, we attempted to observe 
wavy phenomena by choosing the frequency range below 20Hz. For such low 
frequencies significant velocities are achieved by increasing the vibrational amplitudes 
A up to 3 cm. In parallel, a theoretical model of vibrated layers is developed, which is 
aimed at a calculation of the average values of the layer properties, including kinetic 
energy of granular random motion, particle number concentration, and the speeds of 
sound and of shock waves propagating through the vibrated layers. Thus, 
dimensionless parameters governing the appearance of wavy phenomena are 
introduced and expressed via the layer dimensions, granular properties and the 
vibrational parameters. 

Generally, motion of bulk materials is affected by particle-air interactions. This 
effect is especially important for fine particles and powders (Thomas et al. 1987, 1989; 
Fauve et al. 1989). Aiming at an investigation of pure vibrational effects, stipulating 
particle-particle and wall-particle interactions, in the present study heavy particles 
were used (5 mm glass spheres), the motion of which was not significantly affected by 
the gaseous phase. 

2. Experimental setup and three vibrational regimes 
The experimental setup (figure 1) consisted of a ‘ two-dimensional’ rectangular 

vessel, electrical motor with rotational velocity controller, eccentric transformer from 
rotational to translational motion, devices controlling the frequency and the phase of 
the vessel’s vibrations, and a video-visualization system. The transparent walls of the 
vessel were made from two 260 x 260 mm Perspex plates fixed in an aluminium frame. 
The vessel was packed with (T = 5 mm diameter glass spheres. The restitution 
coefficient of the glass spheres was measured and found to be e = 0.88. 

The gap between the plates was 7 mm, which slightly exceeded the particle’s 
diameter. Thus, the motion of all particles could be visualized and recorded. The vessel 
was vertically vibrated by an electromechanical system which allowed discrete changes 
of the vibrational amplitude and continuous frequency changes. 

Control of the rotational velocity (vibrational frequency) was done by means of an 
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electro-optical tachometer. The distribution of particles within the vessel was recorded 
by a video-camera with the exposure times, t, = 1/4000 s or 1/250 s. Recordings were 
made at several constant frequencies and amplitudes, and photographs of the vibrated 
layer were taken from the video film. 

The vibrational regimes studied are characterized by the amplitudes 0.5, 1, 2, 3 cm 
and the frequency continuously varying from 0 to 20 Hz with accuracy better than 
0.5 Hz. The temporal dependence of the vibration amplitude of the vessel was close to 
sinusoidal. The experiments were carried out for the bed thicknesses h,  of 5 ,  10, 15, 20 
particle monolayers. In some of the experiments the vessel was divided by vertical 
partitions in two different proportions: $:$:i or $::. 

Visualization of mixing processes within the vibrated vessel was achieved by 
introducing in the vessel several glass spheres (of the same diameter) painted black. 

The experiments were performed by gradually increasing the vibrational frequency 
ffrom zero, with the amplitude kept constant. It was found that for sufficiently small 
f all the particles oscillated while closely contacting each other, which resembled the 
behaviour of a solid body. With increasing frequency this ‘ solid-like ’ vibrational state 
changed and the layer behaviour was characterized by transverse surface waves 
propagating across the layer width, similar to gravitational waves in liquid layers. 
Accordingly, this vibrational state was termed a ‘ liquid-like ’ or ‘ transverse-wave ’ 
state. 

These transverse waves disappeared with further increasing of f .  In this regime 
vigorous collisional motion of particles was observed, accompanied by compression 
and expansion waves propagating across the layers. Since these phenomena resembled 
those occurring in molecular gases, the corresponding vibrational state was termed a 
‘gas-like’ state. 

Detailed descriptions of the processes observed in each of the three vibrational states 
are given in the following section. 

3. Experimental observations 
3.1. Solid-like vibrational state 

It was found that for thick layers (h,/cr 2 5 particle monolayers, where h,  is the layer 
thickness and cr the sphere diameter) at small vibrational frequencies (r < 1) the layers 
do not detach from the vessel’s bottom (non-detaching regime). For r 2 0.5 the free 
(upper) surface of the vibrated layers was smooth (figure 2b). One can see that the 
particles are organized in a structure possessing both short-range and long-range order 
similar to the solid crystal lattice structure. Accordingly we termed the latter particle 
state as ‘solid state’. 

Further increasing frequency f (when accelerations r exceeded 1) leads to the 
detachment of the layer from the bottom. This generally accords with predictions of 
theoretical models which view the vibrated layer as a solid plastic body (Chlenov & 
Mikhailov 1972; Gray & Rhodes 1972). Both periodic and aperiodic vibrational 
regimes were observed. In the periodic regimes, characterized by period 7, one, two and 
multiple modes were identified, where the vessel met the layer every one, two, etc. 
vibrational periods, i.e. 7 = nT  (n = 1,2 ...), with T = l/f. In general, the modes’ 
multiplicity increased with increasing dimensional acceleration r. 

In the detaching regime the period 7 may be divided into two parts: (i) t f ,  when the 
layer is in the free flight, and (ii) t ,  = 7- tf  when it moves together with the vessel. The 
ratio t c / t f  was found to decrease with increasing r. 

The above observations are in a qualitative agreement with predictions of the layer 
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FIGURE 2. Photographs of the granular layer in the non-detaching vibrating regime: (a) before 
application of vibrations (r = 0 ) ;  (b) in the process of vibrations ( A  = 1 cm,f= 5 Hz, glass beads of 
diameter, here and below, u = 5 mm, h,  = 15 monolayers, t ,  = 1/4000 s). 

behaviour as a solid plastic body (Blekhman & Dzhanelidze 1964), as well as the 
experimental data of Gray & Rhodes (1972). 

The ‘detaching ’ and ‘ non-detaching ’ solid-state vibrational regimes are separated 
by the line r= 1 ,  shown in figure 3, which depicts various vibrational states in the 
(A,f)-plane. When the vibrational frequency increased beyond the value r = 1 the 
uppermost particles jumped above the layer (see figure 4a) .  The ordered packing 
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Solid-like state 
Non-detaching Liquid-like State 

f I“ fil fl“ 
Vibrational frequency, f(Hz) 

FIGURE 3. Diagram of the vibrational regimes of vibrofluidized granular layers. Solid lines: 
theoretical. Experimental data: 0, lower bound (beginning) of the transverse wave regime (all h,). 
Upper bound (end) of the transverse wave regime: 0, h, = 20 monolayers; 0,  h, = 15 monolayers; 
m, h, = 10 monolayers. xl), f), f i 3 )  are resonance frequencies (see (14)), calculated for n = 1 and 
for h, = 10, 15 and 20 monolayers, respectively; xl), A”, fl) are similar frequencies, calculated for 
n = 2. 

arrangement is distorted and the total bed porosity increases. In fact, these jumps stem 
from the particle collisions (see 9 5  and table 2 below). 

During the free flight period the layer porosity is larger than during the contact 
period (figure 4a,  b). This behaviour of the vibrated bed is similar to the observations 
of Thomas et al. (1989) for powders at r = 4,  f = 25 Hz, with the corresponding 
vibrational regime named ‘coherent-expanded ’ state. 

3.2. Liquid-like (or transverse wave) state 
Increasing the vibrational frequency beyond the value corresponding to r - 3.8 k0.2 
leads to transverse bending of the layer due to transverse waves within it (see figures 
5 ,  6). In this regime particle collisions occur more vigorously than in the detaching 
solid-state regime, which results in larger porosity in the upper and the lower parts of 
the vibrated layer (see figure 5). Both the transverse waves and particle collisions 
destroy the long-range interparticle order, although the short-range order is still 
sustained in some parts of the layer. 

This wavy behaviour resembles the comparable process observed in liquid layers. 
Therefore the corresponding vibrational state may be termed a ‘ liquid-like state’. This 
state was found to prevail for thick layer (exceeding 5 monolayers) and only for 
vibrational amplitudes exceeding A = 5 mm. The domain corresponding to this state 
lies above the line r= 3.8 in the (A,f)-plane (see figure 3). 

In the liquid-like (transverse wave) vibrational state the peripheral wave edge comes 
into contact with the vessel’s bottom earlier (see figure 5a)  and detaches from it earlier 
(see figure 5b). The volume of the layer increases with increasing frequency (see figure 
6). The upper frequency boundary of the transverse wave state was found to depend 
upon the layer thickness h, (see figure 3). 
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(a> 

FIGURE 4. Photographs of compression and expansion of the granular layer (weakly detaching 
regime, A = 3 cm,f= 5 Hz, h, = 15 monolayers, t ,  = 1/4000 s). (a) Expansion of granular bed in the 
free flight; vessel moves down. (b)  Compression of bed during the period of upward motion together 
with the vessel. 

3.3 .  Gas-like (compression-expansion wave) state 
With f increasing beyond the upper frequency boundary of the liquid-like state, no 
more transverse waves were observed. In this regime the collisional character of the 
particle motion is most obvious (see figures 7, 8). The intensity of collisions is larger 
than in the liquid-like regime, which results in a more uniform porosity distribution 
through the layer height (see figure 8). The porosity of the lower part of the layer is 
larger than in the middle. This is in contrast with the transverse wave state, where the 
maximum of the particle number density is in the lower part of the layer. 

An increase of the layer uniformity with increasing frequency occurs because of the 
wavy character of the momentum transfer in the vertical direction within the layer. The 
photograph in figure 7, taken with the larger exposure time, shows the dispersion of 
particle velocities in the lower part of the layer, which is caused by the compression of 
the granular gas by the vessel’s bottom moving upwards (compression wave). 
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FIGURE 5. Photographs of the granular bed in the transverse wave state ( A  = 3 cm,f= 10 Hz, h,  = 
10 monolayers, t ,  = 1/4000 s). (a) Meeting of vessel with the lower part of the bending layer; vessel 
moves up. (b)  Vessel moves down after detaching from the granular layer. Notice that the layer 
curvature changes sign. 

In figure 7 particle images in the lower part of the layer possess ellipsoidal shape. The 
length and orientation an ellipse’s longer axis shows the magnitudes and directions of 
the particle velocity. However, particle images in the upper part of the layer appear as 
circles, which means that in this region the particles are stagnant. 

The thickness of the transition region between these ellipsoidal and circular shapes 
is of the order of several particle mean free paths. In molecular gases such a small 
transition region is pertinent to shock waves, rather than to compression waves where 
the transition region is relatively thick. Accordingly, the above waves will be termed 
shock waves. Additional arguments supporting this term are provided in $ 5  on the 
basis of estimates of the wave front propagation speed. 

An expansion wave is shown in figure 8, where one can see that the particle 
concentration in the lower part of the layer is less than that in the middle. This 
expansion wave is formed during the detachment of the layer from the vessel’s bottom 
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FIGURE 6. Influence of the vibration frequencyf on layer porosity in the transverse wave (liquid-like) 
state. ( A  = 3 cm, h, = 10 monolayers, t ,  = 1/4000 s); ( a ) f =  7 Hz, ( b ) f =  10 Hz. The layer porosity 
increases with increasing frequency f. 

and the free-flight stage, and may be explained by transformation of the energy of 
particles random motion into the kinetic energy of their averaged motion. 

3.4. ‘Phase transition’ diagram 
The behaviour of granular layers observed for high-amplitude vibration regimes (A  2 
5 mm) with gradually increasing frequencies resemble the respective behaviour 
exhibited by solid bodies, (incompressible) liquids and gases. These concepts were used 
as a basis for classification of the vibrational states of granular layers. The frequency 
boundaries representing ‘phase transitions ’ were obtained by observing the recorded 
material and identifying the respective frequencies of appearance and termination of 
the transverse wave phenomena. The results of the observations are graphically shown 
in figure 3 for various bed heights. Note that uncertainties in determination of the 
frequencies separating different vibrational states are comparable with the size of the 
symbols. 
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FIGURE 7. Compression (shock) wave within the vibrofluidized bed (vessel moves up, A = 1 cm, 
f= 15 Hz, h, = 10 monolayers, t, = 1/250 s). Ellipsoidal forms of the particle images in the bottom 
part the layer are caused by their motion with velocities up to 2 m s-' in the direction of the long 
ellipses' axes. 

FIGURE 8. Expansion wave within vibrofluidized bed ( A  = 1 cm, f = 10 Hz, h, = 15 monolayers, 
t ,  = 1/4000 s). The porosity of the lower part of the granular layer is larger than that of the 
middle part. 

The areas lying to the left and downward of the transverse wave domains correspond 
to the solid-state vibrational regime. The areas lying to the right and above transverse 
wave domains correspond to the granular gas state. The frequencies separating the 
liquid-like and the gas-like states were found to depend upon the layer height. One can 



360 A .  Goldshtein, M .  Shapiro, L. Moldavsky and M .  Fichman 

FIGURE 9. Synchronization and desynchronization in the vibrated layer ( A  = 2 cm, h,  = 10 
monolayers, t ,  = 1 /4000 s) : (a) synchronization regime (f = 6 Hz corresponding to the solid-like 
state); (b)  desynchronization regime (f= 8 Hz corresponding to the liquid-like state); (c) 
synchronization regime ( f =  13 Hz corresponding to the gas-like state). The length of the vessel is 
divided in the proportion 1 : 3. 
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see from the diagram that, for a fixed amplitude, decreasing the layer height leads to 
an increase of the frequency range in which the transverse wave regime exists. 
Alternatively, the frequency range of existence of the latter regime increases with 
increasing amplitude for a fixed layer height. For the heights h m / g  = 15 and 20 particle 
monolayers and A = 0.5 cm the transverse wave regime was not observed. 

3.5. Other phenomena observed in vibrojiuidized layers 
Several interesting phenomena had been found during observations of the behaviour 
of simultaneously vibrating granular beds : particle circulations, cavern formation and 
synchronization. The latter phenomenon was observed in experiments with vessel 
divided by vertical partitions in different proportions: i:f:f or i::. In the solid- and 
gas-like states layers of different widths were observed to simultaneously detach from 
and meet with the vessel’s bottom, i.e. the moments of detachment and meeting were 
found to be independent of the layer width. This may be seen in figure 9(a-c), which 
shows partitioned layers composed from 10 monolayers in the three vibrational 
regimes. Synchronization is clearly observed in the solid and gas states (figure 9 4  c), 
while it is absent in the liquid-like state (figure 9b). 

Such a synchronization of the vibrational motion of different layers is pertinent to 
the motions of solid bodies (e.g. synchronization of two oscillating pendulum clocks 
attached to the same wall). This constitutes one more argument supporting the 
terminology chosen for describing the solid-like regime. 

The velocities of individual particles were observed to significantly differ from the 
average layer velocity. This velocity dispersion is clearly seen in figure 7 for the gas 
state. To investigate this phenomenon in other vibrational regimes several particles 
were covered with a thin layer of black paint. Such a coating only affects particle 
surface properties and according to the results of Ahmad & Smalley (1973) does not 
lead to any significant segregation of black particles. 

Experimental observations showed that the solid-like vibrational state is charac- 
terized by particle circulations, and thus differs from real solid-body behaviour. For a 
fixed amplitude A the circulation flux was found to reach a maximum at a certain 
frequency f,, dependent upon the layer thickness. In particular, for A = 0.5 cm in the 
beds composed of 15 monolayers of transparent spheres and one layer of black spheres, 
circulative motion starts at the frequency where the bed begins to detach from the 
bottom and prevails up to f = 15 Hz. Two circulation loops are formed, in which the 
particles go down at the bed’s centre and rise in the regions next to the vessel’s walls. 
One such loop may be seen in figure 10. 

In general three mixing mechanisms were observed in vibrating layers : circulations 
in the solid regime; transverse waves in the liquid regime and particle collisions in the 
gas-like state. 

The circulation velocity was found to increase with increasing vibrational amplitude. 
Particle circulations were observed only in the solid-like state, and were not identified 
in the liquid-like state, where they are apparently destroyed by the transverse waves. 
For the gas state the mixing mechanism is particle random motion. In this state particle 
circulation is either absent or dominated by the more powerful mixing mechanism. 

For amplitudes A > 2 cm large inhomogeneities were observed within the layers, in 
particular the formation of caverns (see figure 11). This phenomenon is well known in 
vibrofluidized powder technology (Chlenov & Mikhailov 1972), where it results from 
the ‘pumping effect’ stemming from gas-particle interactions. In the present study, 
performed with bigger particles, the caverns are formed as a result of wave propagation 
and are not related to gas-particle interactions. 
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FIGURE 10. Circular motion of granules within the vibrated layer ( A  = 0.5 cm, h, = 20 monolayers, 
f = 10 Hz, t ,  = 1/4000 s). Visualization of the circulations is done by introducing in the layer black 
glass beads of the same diameter. 

FIGURE 11. Formation of caverns within the vibrofluidized granular layer ( A  = 3 cm, h, = 20 
monolayers, f =  7.5 Hz, t ,  = 1/4000 s). 
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4. Interpretation and modelling of the observations 
4.1. Solid-like regime 

The granular layer vibrated in the detaching solid-like regime may be approximately 
described by viewing it as a single solid block undergoing inelastic collisions with a wall 
(Chlenov & Mikhailov 1972). In the detaching regime of multiplicity n, one has 

~ ~ + 7 ,  = 7 = nT, (1) 

where 7, and 7f are the periods when the layer moves in contact with the wall and in 
free flight, respectively. This means that the layer comes in contact with the wall every 
n vibrational periods. 

Assuming the vessel’s motion x,(t) to be harmonic, one can write the following 
equations of motion : 

xz( t )  = x,(t) = Asin(wt) = A sin(2xtlT) during contact (2,(t) >, -g), (2) 

X,(t) = -g ,  in free flight, (3) 

where xz is the coordinate of the lowermost plane of the layer. At the moment of 
detaching, say t,, both of the above equations are valid, i.e. 

Aw2 sin (wt,) = g .  (4) 

A sin (wt,) = xl(t,). ( 5 )  

t,-td+7, = n T =  7. (6) 

On the other hand, at the moment of meeting with the bottom, t,, 

In terms of t,, t,, one can write (see figure 12; note that th  = t,-7) 

The problem (2)-(5) may be solved to yield the values oft,, t,, 7, = t ,  - th,  7f = t ,  - td 
as functions of the acceleration parameter r. These results together with the non- 
dimensional layer velocity relative to the moving vessel at the moment of meeting are 
presented in table 1. 

We will use the results of the single-body model for large values of r in order to 
compare its predictions with the layer motion observed in the gas-like state. In general, 
this motion is more complicated and differs from the single-body behaviour. In 
particular, the density of the layer differs from the maximal packing density, since the 
layer is expanded. However, several parameters of such expanded layers, were 
compared with the data shown in table 1 ;  in particular, one can see that for r>> 1 

id = t,w 4 1, ~,(t,) = i w ( t d )  x Aw. (7a, b) 

That is, the layer detaches from the wall when the wall’s velocity is close to its maximal 
value. This conclusion accords with the experimental observations. More importantly, 
it was observed in the experiments that for large r the ratio 

7,lT < 1. (8) 

This observation, made in the gas-like vibrational state, is still in qualitative agreement 
with the solid-body model. Further, (6) together with the smallness of id = wt, and w7, 
yields that at the meeting point t ,  FZ 7, or (see figure 12) 

Xl(t,) = x,(t,) x 0. (9) 
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FIGURE 12. Kinematics of the single plastic body model of the solid-like regime. 

t;/2 r 2, I,  F~ Ic/fJ cr = cT-co 
x/5 1.05 1.26 2.52 5.0 3.98 0.08 
2n/5 1.22 0.96 3.47 3.8 1.5 0.54 
3x15 1.58 0.68 4.47 2.5 0.66 1.39 
4n/5 2.23 0.46 5.49 1.3 0.25 2.06 
x 3.3 0.31 6.59 0 0 1.91 
6x15 4.33 0.23 7.77 5.0 0.67 0.85 
7n/5 4.6 0.219 9.02 3.8 0.43 1.77 
87c/5 4.69 0.215 10.27 2.5 0.25 0.5 
9x15 5.26 0.19 11.5 1.3 0.11 1.65 
27c 6.36 0.16 12.72 0 0 1.98 
l l n /5  7.44 0.14 13.96 5.0 0.36 1.05 
12n/5 7.79 0.129 15.21 3.8 0.25 0.07 
13x15 7.84 0.128 16.46 2.5 0.15 0.036 
14x15 8.37 0.12 17.71 1.3 0.07 1.53 
37c 9.48 0.11 18.95 0 0 1.99 

TBLE 1. Results of calculations for the solid plastic body model 

Using ( 3 )  and (7a, b), one can write the following approximate expression for the 
layer velocity during the free flight: 

uZ(t)  = i l ( t )  z A ~ - g ( t - t , )  z Aw-gt .  (10) 

xl(t) = Awt-g t2 /2 .  (1 1) 

Integration with the initial condition xz(t,) z 0 gives, during the free flight, 

Writing this equation at the meeting point, and using (9), one obtains 

2 A w z g r  or r z n n .  
This result implies that 

U , ( t , )  = iZ(t,) z = - Aw. 

The above result indicates that multi-period collisional regimes most clearly 
observed in this study prevail for vibrational frequencies and amplitudes related by 
(12a, b). In these regimes the relative wall-layer velocity at the meeting point is 
maximal and equal about 2Aw. The kinetic energy supplied to the layer by the wall, i.e. 
2MA202,  is also maximal. This energy is partially converted into the granular random- 
motion kinetic energy, which leads to the layer expansion in the gas-like state. 
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The above conclusions and estimates will be used below in the model for shock wave 
propagation through the expanded layer prevailing in the gas-like collisional state. 

4.2. Transverse wave regime 

Bearing in mind the relatively narrow frequency range of existence of the transverse 
wave (liquid-like) regime, it may be inferred that this phenomenon has a resonance 
nature. Since chaotic particle motion in this regime is very weak, the characteristic 
frequency of the layer should be determined as the square root of the ratio of the 
gravitational acceleration g to some linear dimension. Since the transverse waves in 
granular layers are very similar to gravitational waves in liquids (Landau & Lifshitz 
1987), one can use the formula for the characteristic frequencies 

f, = ( g t a n h -  L , n = 1,2, ... 

derived for the latter waves in a rectangular vessel of height h,, length L and an 
arbitrary width. The integer value n describes the number of half-waves contained 
within the length L. 

Calculations of f,,fz using (14) for the ratio h,/L = 10/52, 15/52, 20/52, 
corresponding to the experimental conditions, are presented in figure 3 .  One can see 
that the first two resonance frequencies fit into the range of existence of the transverse 
wave regime in granular materials. Formula (14) sufficiently accurately predicts the 
characteristic frequencies corresponding to the largest transverse waves amplitudes, as 
well as the wave shape (i.e. half-wave). Noting that (14) was derived for a continuous 
incompressible inviscid liquid (Landau & Lifshitz 1987), the above agreement appears 
to be surprisingly good. 

The layer porosity (and consequently compressibility) was found to increase with 
increasing amplitude A .  Moreover, for large vibration amplitudes ( A  > 2 cm) 
discontinuities, i.e. caverns, appear within the bed (see figure 11). This phenomenon 
was observed only for thick layers (more than 5 monolayers) and large amplitudes ( A  > 
2 cm). The discrepancies between the frequencies calculated by formula (14) and the 
measured data may be partially attributed to the appearance of these discontinuities. 

The predictive power of (14) was investigated for other layer aspect ratios. For this 
purpose thin plates of Perspex were placed in the vessel, to divide its length in two parts 
(in proportion 1 : 3), and in three parts (in proportion 1 : 2 : 1). For a fixed layer height, 
h,, decreasing layer length, L, leads to a monotonic diminution of the frequency range 
of existence of the transverse wave regime. However, this frequency range remains 
inside the corresponding range measured for the whole vessel, in accordance with 
formula (14). 

Summarizing the above, one can state that (14) adequately correlates the central 
values of the frequency ranges for the liquid-like (transverse wave) states of the 
vibrofluidized granular layers. However, it cannot predict the lengths of the above 
intervals or their dependence on the vibration amplitude. In addition, (14) obtained for 
inviscid incompressible liquids can not predict amplitudes of the transverse waves. 
These amplitudes are governed by the liquid’s viscosity (Landau & Lifshitz 1987), the 
value of which for vibrofluidized granular layers may be determined from kinetic 
theory (Jenkins & Savage 1983). 

Fauve et al. (1989) observed layers of powders which bent in a spatially periodic 
manner when vibrated with frequencies of 20 Hz. They interpreted this behaviour as 
a standing wave, like in ordinary liquids. However, calculations by (14) show that the 
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resonance oscillation frequency for layers with the parameters reported in this work are 
much lower than 20 Hz. It is, however, possible, that this discrepancy can be attributed 
to the influence of gas-layer interactions. The latter can possibly also explain the 
bending of the layers of powders noted by Thomas et al. (1987). In their study the 
curvature of the layer did not change (with the central part of the layer being always 
higher than the peripheral parts). Therefore, this motion is clearly not of wavy origin, 
unlike the present study where the layer curvature changed periodically. 

In contrast with above studies we used relatively large heavy particles, for which 
particle-air interactions are negligible. Therefore the transverse waves that we 
observed in vibrated granular beds are a new phenomenon, arising due to a 
gravitationally induced instabilities. 

4.3. Collisional gas-like state 
4.3.1. General 

In this subsection observations made in the collisional regime are interpreted by 
employing the hydrodynamic equations describing the transport and evolution of the 
macroscopic granular properties, averaged over a representative volume (Jenkins & 
Savage 1983). Such equations are usually derived by application of the kinetic theory 
developed for molecular gases (Chapman & Cowling 1970). Clearly the kinetic theory 
of the collisional granular motion is unable to yield as accurate a description of the 
rapid granular flows as it does for flows of molecular gases. It stems inter alia from a 
relatively small number of particles within the representative volume (over which the 
averaging is performed). However, the experiments of Drake (1990) with rapid shear 
granular flows, showed that an averaging area with the height of 2 particle diameters 
and length of 14 diameters provides a sufficiently accurate hydrodynamic description 
(for more details see Drake 1990). 

Wave propagation processes in vibrofluidized layers are characterized by an 
additional degree of complexity compared to steady granular flows, since these 
processes are inherently unsteady and non-homogeneous. The goal of the treatment 
given below is to use the hydrodynamic equations for estimation of the average 
properties of vibrated granular layers. 

4.3.2. The Euler hydrodynamic equations of collisional motion 
Consider the particles as identical spheres of radius CT in collisional motion. We will 

consider these collisions as instantaneous, as is done for molecular gases. Viewing the 
layer as a granular gas (Jenkins & Savage 1983), one can characterize its collisional 
state by the hydrodynamic properties : granular gas mass concentration p (related to 
the number concentration n via p = mn), velocity u, pressure P,  and energy of random 
granular motion per particle E. 

We will restrict considerations to regimes for which the particle concentration p is 
close to the maximum packing density, p m  (see figure 2a), i.e. 

A l - p / p m  < 1. (15) 

Neglecting the inelasticity of the granules one can write the equation of state of the 
granular gas in the form (Alder & Hoover 1968) 

which is valid for simple gases consisting of elastic smooth particles. 
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It may be shown that the error introduced in (16) by neglecting particle inelasticity 
may be represented by the factor (1 + e ) / 2 ,  with 0 < e < 1 being the particle’s 
restitution coefficient, which in the present case of glass beads is 0.94. The non- 
conservative nature of the particle collisions is taken into account in the equation 
governing the evolution of particle’s kinetic energy (see (17 c)). 

A one-dimensional version of the Euler-like equations of an inelastic smooth 
granular gas may be written in the following form (Campbell 1990; Goldshtein & 
Shapiro 1995) : 

aP a a a 
at ax 
-+-@u) = 0, -@u)+-@u2+P) a t  ax = -pg, 

a a 
a t  ax 
-(nE+ipu2)+-[nu(E+imu2)+uP] = I@, E) ,  

where I@, E ) ,  given by (Jenkins & Savage 1983; Goldshtein & Shapiro 1995) 

I=--(-) C(e) E 312 =--(-) 2 6 1/2(1 - e )  , ad m CTA n: 

is the energy sink term associated with the non-conservative nature of the particle 
collisions. In the above C(e) = 2( 1 - e2) (6/7~)’/’ is the coefficient dependent on the 
particle inelasticity, derived for three-dimensional granular systems. Although the 
distance between the walls of the vessel employed in the experiments only slightly (by 
2 mm) exceeded one particle diameter, the three-dimensional granular gas model was 
used for the following reasons. The energy of chaotic particle motion is distributed 
between their available degrees of freedom. The availability of any degree of freedom 
is characterized by the particle’s ability to move without collisions. Photographs 
presented in figures 4, 7 and 8 clearly show that the distances between the particles in 
the plane of the photograph (the mean free path) are of the order of several millimetres. 
Therefore, the gap between the vertical vessel’s walls was of the same order of 
magnitude as the mean free path in each direction, which justified using three- 
dimensional model in the calculations. 

Hydrodynamic equations of rapid flows of granular materials employed in previous 
studies (see e.g. Jenkins & Savage 1983) contain terms accounting for viscosity and heat 
conductivity. These effects are important in modelling rapid shear flows of granular 
media (Campbell 1990). However, similarly to the comparable processes in molecular 
gases, viscous phenomena are less important when modelling expansion and shock 
waves (see, for example, Moody 1990) and studies cited therein). Therefore, we neglect 
viscous interactions in (1 7 a-c), thereby restricting our consideration to the Euler-like 
hydrodynamic model for describing wave propagation processes. 

Equations (1 5)-( 18) are subject to boundary conditions, which may be formulated 
as follows : when the wall moves upwards into the granular gas its velocity is equal to 
the wall’s velocity 

This equation is also valid when the wall withdraws from the gas until the moment of 
detaching t = t,, which is described by the condition 

u = u,(t) at the lower boundary if P 0. ( 1 9 4  

P = 0 at the lower boundary. (19b) 

During the free-flight period the granular pressure at the top and the bottom edges 
vanishes. Accordingly, in this period (19 b) is also employed at the upper free surface. 
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(4 
6 Shock wave 
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FIGURE 13. Distribution of kinetic energy of granular random motion across the vibrofluidized 
layer: (a) during shock wave propagation; (b  during expansion wave propagation. 

The process occurring within vibrated granular layers may be described by the 
following qualitative considerations. Consider collisional motion of the granular layer 
with a certain period 7 = nT. A short time after the layer comes in contact with the 
moving wall, the particle hydrodynamic velocity, u, near the wall becomes close to the 
wall’s speed, whereas far from the wall the particles continue to move as in the free- 
flight stage (cf. figure 7). This velocity discontinuity (shock wave) propagates from the 
lowermost to the uppermost part of the granular layer with a speed D, creating particles’ 
chaotic motion behind the front. This chaotic granular motion creates granular 
pressure P (and, hence, random motion energy E )  within the disturbed region (see 
figure 13a). At the moment t = tsh, when the shock wave reaches the layer top (where 
P = 0) an expansion wave is formed, which propagates from the uppermost to the 
lowermost part of the layer with the speed of sound a within the granular gas (Savage 
1988). 

When the expansion wave arrives at any plane s of the layer, part of the kinetic 
energy E,, which it received from the vessel will dissipate due to inelastic particle 
collisions. The remaining part (E(s)) will be transformed by the expansion wave into 
the energy mAuk/2 of average particle motion, with Aum being the velocity relative to 
the motion of the layer’s centre of mass. Owing to this energy transformation the 
particles involved in the expansion process will accelerate upwards. The expansion 
wave propagating downwards will successively pass ‘cooler’ granules, since there the 
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dissipation process, which began after the passage of the shock wave, occurred longer. 
Accordingly, for lower parts of the layer less kinetic energy E will be converted into 
average motion. Therefore, the upper parts of the layer will accelerate upwards faster 
(with larger AM,) than the lower ones. The hydrodynamic velocity gradient thus 
formed within the layer cause its expansion during free flight. 

For analyses of the expansion wave propagation an expression for the speed of 
sound a is needed. For smooth elastic spheres this quantity is given by (Savage 1988; 
Goldshtein & Shapiro 1995) 

The above expression together with the equation of state (16) gives 

a = ‘(E)’”. 
A m  

In this formula the kinetic energy losses due to particle inelastic collisions will be 
implicitly accounted for in the expression for the energy E. 

Complete formulation of the wave propagation problem should include conditions 
for changes of the hydrodynamic properties across the shock front (Goldshtein & 
Shapiro 1995). For equations (17a-c) with the dissipation term I given by (18) these 
conditions coincide with the Rankine-Hugoniot conditions (Courant & Friedrichs 
1948), used for molecular gases : 

r r p ( ~  - = 0, r r p ( ~  - + PI = 0, P a ,  b) 

in [n(D-u){E+i+T(D-u)’ P m  = 0, 

where D is the kinematic speed of the shock front and I[. . .] denotes the jump of any 
hydrodynamic property across the shock front. The energy dissipation term does not 
contribute to the above jump condition, neither does any volumetric sink/source term. 

4.3.3. Asymptotic solution for weakly expanded layers 
We will provide an approximate solution of equations (1 7 a-c) aimed at establishing 

basic scaling relationships between the mean (i.e. average over the thickness and the 
period 7) layer properties and the vibrational parameters. Rewrite system (17a-c) using 
(15) in the Lagrangian form (Courant & Friedrichs 1948) 

(23 a-c) 

where the layer mass variable s is calculated by integrating the particle mass density 
distribution from the lowermost possible piston position : 

Accordingly, the uppermost part of the layer corresponds to its total mass s = M ,  and 
the lowermost part to s = 0. Since all hydrodynamic layer properties are assumed to 
be time-periodic functions with period T = nT, the shock wave passes each point s 
within the layer once per period 7. 
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Using (24) one can rewrite the Rankine-Hugoniot relationships (22a-c) in the 

(2  5 a-c) 

where D, = (D-u)p is the mass speed of the shock front (function of s only). In 
addition, owing to the periodicity of the process the jump of any hydrodynamic 
property f (continuous in the interval + 0 < t" < 7 - 0) may be written in the form 

where for any point s the local variable t" is chosen in such a way that t"= 0 at 
the moment when the shock wave passes through s, i.e. (see figure 12; note that 
tm-t;  = 7) 

- -  ds, 
t = t( t ,s)  = t-t;,- 

At the moment [t" = 01, when the shock front passes through a point s, the properties 
P, E, d at this location instantaneously increase. After that they decrease as a result of 
dissipation of the granular kinetic energy and its partial conversion into the energy of 
the average layer motion. Consequently, well before the moment t = tm - T of its next 
meeting with the wall the granular pressure, P,, and the energy, E,, associated with the 
random granular motion diminish to zero : 

E,=O, P , = O ,  O < s < M .  (28) 

However, as will be shown below, during the free-flight period, 4 =I= 0, since the layer 
expands due to the velocity gradient in it. 

Conditions (28) imply that the situation considered here corresponds to the strong 
shock wave approximation (Courant & Friedrichs 1948). Using (7 b), (1 3),  ( 1  5 )  and ( 1  6 )  
one can rewrite conditions (25a-c) in the respective forms 

do = 47/23 Po = 0: 47/(2pm), ug = D, 47/(4pm). (29 a-c) 

We will seek solutions for (23a-c) subject to the conditions (29) and (19) assuming 
that the hydrodynamic quantities weakly depend upon the coordinate s. This allows 
expansions 

u(s, t")  = U'O'(t") + u y s ,  t") + . . . , d(s, t") = 4'"(2) + d'2'(s, t")  + . . . , ( 3 0 4  b) 
P(s ,  t )  = p(-l)(t") + P(O)(S, t") + . . . , DL(S) = DL-1' + D p ( s )  + . . . , (30G d )  

(30e) 

$(') = O(d0)'", k = - 1,0, 1, ... (30f )  

a(s) = a(-') + a('+) + ..., 
where generically 

with 4 being any of the expansion coefficients appearing in (30). The zero-order 
velocity do)(?) is given by solution obtained for the solid plastic body model (cf. (2),  

which is shifted by the time (see (27)) 

ds, lo D,o 
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due to the finite speed of shock propagation. This velocity together with the coefficients 
A('),  F') 7 D(-l) L ?  a(-') represent the leading-order solutions for a slightly expanded 
layer, which on average performs solid plastic body motion (31a, b). The scaling 
relationships for the expansion coefficients assumed in (30 a-d) will be substantiated in 
the course of the solution and verified in the next section on the basis of the 
experimental data. 

Introducing expansions (30a-d) in the system (23 a-c) and using (30f)  to separate 
terms of equal powers of A,, one obtains the following system of equations: 

Equation (32a) may be used to express via the as yet unknown function A(')(t") : 

subject to the initial conditions 

p(-')(O) = Po, A"'(0) = A,. (34) 

The system (32 a-c) contains four unknown functions. Therefore an additional 
condition is needed. To provide an additional condition integrate (32b) over the period 
and use (15) ,  (29a, c) to obtain 

i.e. the velocity gradient averaged over the period is zero. This allows it to be assumed 
that i3u(l)/as = 0 which allows (32 b) to be reduced to the form 

1 dA(') 1 dd0) 
p m  dt" Dip') dt" ' 
-.---.---- N 

Now the system (32a, c), (35 )  may be integrated to obtain 

(35  a )  

(35 b)  P m  t") - A ,  X - F [u'O'(t") - u,], 

where the following boundary conditions were satisfied : 

t"= 0: u(0) = U, = Awcoswt, x Aw, A'"(0) = A,. (35  c) 

We now use (4), (31) ,  (12a), (35c ) ,  jump conditions (29a, c) and condition 07, 4 1 (see 
(8)) to estimate the left-hand side of (35b) during the contact period 0 < t"< 7,: 

P m  x T ,  - Aw2 sin (wtJ 
D p  
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One can, therefore, see from (35a), (36) that A(')(?) changes insignificantly during the 
contact period and in (33) set A(')(?) z A,  to obtain 

This result accords with the solutions of Raskin (1975) and Haff (1983) describing the 
decay of granular pressure in the absence of gradients of hydrodynamic functions. 

The above formula predicts the diminution of the pressure at each point within the 
layer until the moment of arrival of the expansion wave, which propagates downwards 
from the uppermost plane. This process starts at the time moment t = rsh, when the 
shock wave reaches the uppermost plane of the layer. We will use this result together 
with the jump conditions (29a-c) to estimate the layer properties Po, E,, Dip'). 

4.3.4. Estimation of the layer vibrational properties 

and combining the result with (29a, b), one obtains 
Substituting uo and u, respectively from (35b) and (13) into jump conditions (29c) 

Using the above, one can express the time rSh of the shock wave propagation across the 
layer in the form 

After the shock wave reaches the top of the layer, where the granular pressure is zero 
(see (19b) and the immediately following paragraph), an expansion wave is formed, 
which propagates downwards with velocity a x a(-'). The effect of this wave is to 
convert the kinetic energy of random granular motion into the kinetic energy of the 
average motion. As in molecular gases (Courant & Friedrichs 1948), such a conversion 
takes place without discontinuities in hydrodynamic properties during a certain finite 
time. In the model we will, however, for simplicity assume that the random-motion 
kinetic energy E prevailing at  a point seZp at the moment when the expansion wave 
passes it, is instantaneously and fully converted into the kinetic energy of the average 
granular motion. In the coordinate system fixed with the moving piston this 
assumption is written in the form 

E(sez.1 = m[Aurn(sexp>12/2, (40 4 
where Aurn is the velocity gain immediately after the conversion. Therefore, behind the 
expansion wave one has E = 0 (see figure 13 b). 

As the expansion wave propagates downwards, the upper layers will move under the 
action of gravity, the effect of which is to diminish the initial maximal velocity gain Aurn 
given by (40a) according to the expression 

Au(sexp9  t )  = AUm(Sezp)-g[t- t e z p ( s e z p ) l ,  t e z p ( s e z p )  < t < t e zp (O) ,  (40b) 

where tezp(sezp) is the time taken for the expansion wave to pass from the uppermost 
plane s = M to the current plane s = s,,.: 
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Accordingly, (40 b) accounts for the gravitational loss of the velocity gain occurring 
during the time it takes the expansion wave to travel from s = sexp to the lowermost 
plane of the layer, s = 0. 

Clearly, when the expansion wave passes the upper parts of the layer (corresponding 
to sexp z M )  they are subjected to larger pressure and hence yield larger Au. On the 
other hand, by the time of arrival of the expansion wave at the lower parts (with sexp 
close to 0) they are almost 'cold' and, hence do not contribute to Aum, and hence to 
Au, i.e. Au(0) = 0. This leads to the velocity gradient aAu/as across the layer, which 
cause its expansion. We will replace Au(s) by a linear function 

wherein =/as is the average velocity gradient, which can be expressed by integrating 
both sides of the above equation: 

We will further evaluate the integral in (41). Towards this goal note that in 
accordance with the definition of the speed of sound, sexp is governed by the following 
equation : 

and the initial condition 

Using (27), (30d) and (38a)  one can write 

Sexp(tsd = M .  

and (37) may be rewritten in the form: 

(43) 

Using this equation together with equations of state (16) and (21) for the speed of 
expansion wave, equation (42) may be rewritten in the form 

This should be solved subject to the initial condition (43), which with the help of (16), 
(44b) takes the form 

Problem (45), (46) has 

wherein the coefficient 

a(M)  = ,3g7/do. 

the following solution 
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One can see from (46), (47a) that shortly after t = t,, when the shock wave arrives 
at the top of layer (seXp = M ) ,  the speed of sound is comparable to the kinematic shock 
wave speed D = D,/p,  with D,  given by (38a). However, when the expansion wave 
reaches the layer bottom (seXp = 0), its speed of propagation is much less than D (by 
a small factor exp( - KM)). 

Using (47), (21) and (40a-c) one can calculate 

When the expansion wave reaches the bottom of the layer (s = 0) it detaches from 
the vessel and the free flight begins. During this stage gravitation acts in the same 
manner upon all the granules and, hence, the velocity gradients do not change. We 
therefore calculate the average velocity gradient at the moment of detachment, texp(0). 
Calculations according to (40), (41) yield 

where 

1 
H 

AH) = -ln(l+2/3-2/3e-H'd3), 

and parameter H is given by 
H = C(e) hm/(22/2g) .  

On the other hand, the spatial distribution of the velocity across the layer at time t ,  
may be determined from purely kinematic considerations by substituting (44a) into 
(31b): 

valid during the free-flight stage. This solution predicts an average velocity gradient in 
the form 

do) % AWCOS (Wtd)-g( t - t&-tc-S/DL),  (52) 

This velocity gradient was calculated from purely kinematic considerations, i.e. 
application of the plastic-body periodic motion combined with the shock wave 
kinematics. It should be equal to the velocity gradient given by (49), calculated by the 
energy conservation principle. This assumption leads to the following relation : 

aauu - 

as as' (54) 

which in combination with (49), (50a, b) and (53) yields the following expression 
for A,: 

do = k ( H )  (Au)2/(ghm), (55 a) 
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where 

Using (38 b), one obtains the mass speed D, of the shock front 

The time t,, of propagation of the shock wave through the layer with mass per unit 
area M is 

k ( H )  Aw 
t,, = --. 

2 g  
(57) 

We will also estimate the average granular pressure, P, in the granular layer: 

- l M  
P = %J0 (P)ds, with ( P )  = 

This may be done by integrating (32c) from t"= 0 to r together with conditions 
(29b, 4 

Integrating this equation over the layer together with condition PcO) = 0 for s = M ,  one 
obtains ~ 

We note that the above result is exact, since it may be directly obtained from (23 b) and 
condition (25 b) without expanding P by (30c). 

Now we can calculate the average value d o f  the dimensionless density A ,  given by 
(35b) with uco)(t) and DL-l) represented by (31)  and (38a). These calculations may be 
simplified by bearing in mind that A changes insignificantly during the contact period, 
and changes linearly during the free flight. Accordingly, one obtains using (30a) and 

P z P(O' = Mg/2. (60) 

( 5 5 ) :  - 

A = $lo = $k(H) (Aw)'/gh,. (61)  

Analysing (61) ,  one can see that one way to expand the layer (increase d) is to 
decrease the height h,, which was done by Bachmann (1940). Another way to increase 
d i s  to increase the maximum speed of wall oscillations, e.g. Aw, which was observed 
in the experimental part of this study. 

In order to obtain the average value E of the particle random-motion kinetic energy, 
integrate both sides of (16) over the layer mass and the time period. This together with 
(60) and the facts that A(')(t") z A ,  = const. during the contact period and E = 0 during 
the free flight, yields 

This value may be compared with the initial energy E, supplied to the particles, which 
is by virtue of ( 1  6 )  and (38 b) 

E = imgh, A,.  (62) 

P m  
E, = 0 A ,  = 2mA2w2. 

2PM 

Equations (62), (63) combined with (61)  lead to 

E/E,  = i k (H) .  (64) 
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From this expression it is clear that k ( H )  may be interpreted as a coefficient 
characterizing kinetic energy losses within vibrated layers with respect to the kinetic 
energy supplied by the wall. This coefficient depends on the dimensionless complex H,  
given by (51), which is proportional to the number of monolayers h, /a  and the 
inelasticity factor (1 -ez) .  

Formulae (56) and (61) imply that the average vibrational state properties are 
governed by the dimensionless parameter 

V = Aw/(gh,)1'2, (65) 

in terms of which one can write 

These relationships constitute our main result which will be analysed in the following 
section. 

5. Discussion 
Formulae (66 a-c) are applicable to the collisional regime of vibrofluidized layers. 

Accordingly, they contrast with the results obtained in the treatments of Bachmann 
(1940), Kroll (1954), Gray & Rhodes (1972), Gutman (1976), Erdesz & Mujumdar 
(1989), and Clement & Rajchenbach (1991), where the major part of the layer moved 
in the plastic body regime. In these studies not more than about five upper monolayers 
were fluidized. Estimates show that in these regimes parameter V is small, i.e. of order 
0.1 or less. However, in the collisional regimes investigated here V - 1 (see table 2 
below), which enabled full vibrofluidization of the layers at least for regimes 
characterized by (1 2 a, 6). 

The solution obtained in the previous section supports the general scaling relations 
assumed in expansions (30a-e). In particular, one can see from (30a, d )  that u = 

O(1) < D = O(d;l). This is also supported by the experimental data, which show that 
for the vibrational regimes used here D % u - Aw (see table 2 below). 

Our model is based on experimental observations and basically differs from the 
model proposed by Haff (1983), who disregarded the wave propagation process in 
vibrated layers. He postulated, rather, that the particle kinetic energy in vibrated 
granular layers is transferred by ' conduction'. This assumption is physically non- 
plausible, since the oscillating wall cannot contribute to the granular kinetic energy of 
random motion without creating a (vertical) averaged hydrodynamic velocity. Hence, 
wall-layer interactions inevitably lead to the formation of shock waves. Haff s model, 
thus, accounts for the higher-order effects and disregards the primary (wave 
propagation) mechanism governing energy transfer in vibrated granular layers. 

Equation (666) predicts that the shock wave speed is inversely proportional to V. In 
fact neither direct measurements nor calculations of the speed of shock wave 
propagation in bulk materials have been performed. Gray & Rhodes (1972), however, 
reported that a stress wave propagated through their bed composed of solid 
particles with a velocity of about 150 m s-'. Such a wave takes about 1 ms to reach the 
upper surface of a bed of 15 cm thickness. Bearing in mind this fact together with (56), 
(61) it is possible to estimate the average deviation 2 from the maximum particle 
concentration in Gray & Rhodes' experiments. Takingf= 50 Hz, r = 4, one obtains 
the maximum wall velocity u,,, = Aw = 0.127 m s-' and d- 0.0034. Such small 
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H = 1.02( 1-e2) h,lg 

FIGURE 14. Comparison between theoretically calculated and experimentally measured kinetic 
energy loss coefficient: hollow symbols - present data; solid symbols - Gray & Rhodes (1972). 

deviations from the maximum packing density practically cannot be measured. This 
justified their solid-body considerations of the layer motion. 

5.1. Testing of the collisional gas-like state model 
The vibrofluidized layer model given by (56), (61) was verified by using the experimental 
data presented in figures 2, 4, 7 and 8 to calculate the coefficient k appearing in these 
equations. Explicitly, control volumes were chosen in the above photographs, 
containing several hundreds of particles, for which the particle number concentrations 
were calculated. The results were used to calculate d by formula (15), which values 
were used as estimates for the average deviation dfrom the maximum packing density. 
Then (61) was solved to obtain the value of k for given A,fand h,. Independently, the 
coefficient H was calculated from (51) using the restitution coefficient e = 0.88, 
measured for the glass balls. 

The results of the calculations are summarized in table 2. It can be seen that 
vibrational excitation of granular layers in the non-detaching regime does not lead to 
appreciable changes of average particle concentration (see rows 1 and 2 of the table). 
The value n = 4.2 cm-', obtained from figure 2(a,  b) was chosen as an estimate for the 
maximum packing density of the considered system of spheres. 

The data taken from Gray & Rhodes (1972) are also listed in the table, together with 
the corresponding value of k.  This was calculated using their data D = 150 m s-l and 
assuming h, = 5g, i.e. only five upper monolayers are fluidized as was observed by 
Bachmann (1940) for regimes characterized by low V and high r. The shock wave 
velocities in our experiments (with much higher V )  are about ten times less than those 
reported by Gray & Rhodes (1972). Alternatively, this difference stems from the lower 
particle concentration in our experiments. 

The values of k calculated from the experimental data are shown in figure 14, where 
the theoretical k ( H )  curve is given by (55b), (50a, b). The data of Gray & Rhodes 
(1972) are also plotted. One can see that the experimental results fit the model 
predictions well. In particular, one can note that data collected for the solid-like 
regimes satisfactorily agree with the calculations performed for the collisional model. 
This underlies the dual nature of the solid-like vibrational regime, which on the one 
hand yields solid-body kinematics, and on the other hand reveals internal energy 
transfer processes, well correlated by the gas-like model. Additional support of the 
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present model is given in Part 3 of this series (Goldshtein, Shapiro & Gutfinger 1995), 
where the energy transfer coefficient k ( H )  is compared with the corresponding result 
obtained from an exact analytical solution of the shock wave propagation problem in 
a semi-infinite granular layer. 

The shock wave shown in figure 7 is seen to propagate into a cold granular gas. The 
speed D of the shock front may be estimated from table 2 and is of order 10 m s-l. This 
is clearly much more than the speed of sound a in the cold granular layer, since the 
kinetic energy E governing the value of a (see (21)) is very small. This statement may 
be supported by figure 7 (where the granules lying above the front are almost stagnant) 
and by the proposed model, which predicts fast exponential decay of a with time (see 
(47a) and the explanations which follow it). Note that the ratio a / D  is given by exp 
(- KM) = exp (- H )  6 1 (see table 2 for the values of H ) .  

The particle number concentrations observed in figures 7 and 8 are relatively large 
( A  = 0.4 and 0.45, see table 2). For such number concentrations the assumptions 
underlying the model developed in the previous section, in particular the assumption 
A 4 1 and equation of state (16), are not justifiable. This can partially explain the 
difference between the experimental and calculational values of k for these regimes. 
Another possible reason is that the values of n evaluated from the photographs are 
instantaneous quantities and, generally, differ from the comparable time-averaged 
quantities, appearing in (56),  (61). Therefore, the results of calculations in table 2 
should be viewed only as estimates. Bearing this in mind the agreement shown in figure 
14 is surprisingly good. 

5.2. ‘ Visualization’ of the shock front by photographing systems 

We will discuss here the choice of the exposure time for photographing the shock front 
propagating through vibrated granular layers. In all experiments we observed that the 
particle number density changed insignificantly during the vibrational period. As such, 
the dimensionless difference [ A ]  between the particle number concentrations in front of 
and behind the shock front is usually small and the front’s position may be identified 
only by the difference between the particle velocities in the ‘cold’ (before the front) and 
the ‘hot’ parts of the layer. This difference is visualized in the photograph by observing 
the images of ‘hot’ (moving) particles as ellipses (see e.g. figure 7), while the ‘cold’ 
particles appear as circles. In order to obtain a clear ellipse-like image of a particle of 
diameter u and moving with velocity u, one should choose the exposure time t, of the 
photographing system as 

t, - u/v. (67) 
On the other hand, the exposure time should be much less than the time t,, during 

which the shock front travels across the layer: 

te < ‘ sh .  (68) 
Using in (67) particle’s velocity u = (2E,,/m)1/2 = 2Aw (see (63)), and employing (57) 

for tsh together with (68) ,  one obtains the following condition on t,: 

It appears, thus, that the proper choice of the exposure time depends upon the 
vibrational regime and the particle size, but is independent of the particle’s mass. 
Condition (69) may thus be used to rationally design the photographing or high-speed 
videorecording system for investigation of wavy regimes of vibrofluidized granular 
layers. 
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The data appearing in the third and fourth rows of table 2 correspond to different 
phases of the same vibrational regime of figure 4(a, b). It may be seen that neither d 
nor k exhibits significant variations and, hence, for this regime one may take d= 0.2 
and k = 0.112. One can use these values to calculate according to (57) the characteristic 
travelling time of the shock wave, as t,, = 0.0018 s. This time is less than the minimal 
exposure time t, N al (2Aw)  = 0.027 s of the photographing system given by (67). It is, 
therefore, clear why no shock waves can be registered by this optical method for the 
regime A = 3 cm, f= 5 Hz, corresponding to figure 4(a, b). For such vibrational 
regimes the above method of longitudinal wave visualization is inefficient. Therefore, 
in these cases a shorter exposure time t, = 1/14000 s was employed, which enabled 
clear particle images to be obtained and facilitated measurement of the bulk density. 

On the other hand, the shock wave can be easily observed on figure 7 where t,, = 

0.0079 s and t, = 0.004 s. For such a large shock propagation time the front may be 
registered either by phase-independent video-photographing, from frame-by-frame 
observations, or from series of non-synchronized camera shots. Therefore, by choosing 
proper vibrational regimes (where the layer is well expanded and the shock wave speed 
is low), one can easily observe shock front propagation even with low-speed phase- 
independent videorecording. 

5.3. Granular kinetic energy within the vibrofluidized layer 

Formula (64) together with the values of k ( H )  calculated from (55  b) may be used to 
calculate average granular kinetic energy. These expressions show that the major part 
of the energy which the layer receives from the vessel is lost due to inelasticity of the 
particles collisions, even when the restitution coefficient is as high as 0.88. This 
estimation is an additional justification of the strong shock wave approximation (28) 
and the employment of the solid plastic body model for t > t,, made in the previous 
section. As we have seen above, the estimates made for the vibrofluidized regimes 
summarized in table 2 lead to the conclusion that granular layers constitute rather 
‘cold’ and ‘dense’ gases as compared with molecular gases. Nevertheless, high- 
amplitude and low-frequency vibrations yield much less dense layers than those 
characterized by the same dimensionless acceleration r, albeit vibrated with low 
amplitude and high frequency. Indeed, one can use (61) to see that for obtaining a 
particle concentration corresponding to d= 0.2 of the layer of particles with e = 0.88 
and h,, I/ as in row 3 of table 2, using frequency f =  50 Hz, one needs to achieve 
accelerations of about r = 27 (i.e. ten times larger than in the regime A = 3 cm, f =  
5 Hz). It is clear that such large accelerations necessitate the application of very high 
power and significantly reduce the operational time of vibrational machines. Our 
results, therefore, may be used to design efficient vibrational machines for processing 
granular materials. 

6. Concluding remarks 
The collisional motion of vibrofluidized layers observed for granular layers vibrated 

with small frequency and large amplitude ( A  2 0.5 cm) is characterized by longitudinal 
shock and expansion waves. The former waves propagate within the layer with a speed 
exceeding that of small disturbances (speed of sound). The existence of both expansion 
and shock waves constitutes an inherent property of the collisional motion of 
vibrofluidized coarse granular materials. These waves serve as a mechanism sustaining 
the collisional gas-like regime of the particle motion. 

The above regime differs markedly from the single plastic body behaviour observed 
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previously for layers composed of coarse granules and vibrated with small 
amplitudes and large frequencies. 

In the liquid-like state transverse waves were observed which were shown to result 
from gravity-induced instabilities of the one-dimensional layer motion. The vibrational 
resonant frequencies calculated via the layer aspect ratio h,/L are in a satisfactory 
agreement with the experimentally observed values. 

An approximate model proposed for the collisional regime of the vibrofluidized layer 
motion yields scaling of the particle average vibrational state parameters via the 
dimensionless criterion V = (Aw)/(h,g)1/2. The propagation speeds of shock and 
expansion waves, as well as the average values of the kinetic energy of particle random 
motion are expressed in terms of V and a dimensionless coefficient k(H) .  The complex 
H was shown to depend upon the layer dimensionless thickness and particle restitution 
coefficient. Physically k characterizes total kinetic energy losses within the layer with 
respect to the energy supplied by the vibrating vessel. By analysing the particle number 
density shown on different photographs, the latter coefficient was calculated and found 
to agree with the values calculated from the model. 
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